Mathathon 2019 Round 3

Maths and Physics Club, IIT Bombay

 2^{nd} October, 2019

Name: E-mail: Freshie/Senior

For $n \in \mathbb{N}$, let $\varphi(n)$ denote the number of positive integers less than or equal to n that are relatively prime to n.

- 1. For positive odd integer n, let $f(n)$ denote the number of matrices A satisfying the following conditions:
	- (a) A is $n \times n$.
	- (b) Each row and column contains each of 1, 2, \ldots , n exactly once in some order.
	- (c) $A^T = A$.

Prove that $f(n) \geq \frac{n!(n-1)!}{(n-1)!}$ $\frac{\left(n-1\right)!}{\varphi(n)}$.

- 2. Let n be a positive odd integer greater than 2, and consider a regular $n q$ G in the plane centered at the origin. Let a subpolygon G' be a polygon with at least 3 vertices whose vertex set is a subset of that of G. We say that \mathcal{G}' is well-centered if its centroid is the origin. Also, \mathcal{G}' is decomposable if its vertex set can be written as the disjoint union of regular polygons with at least 3 vertices. Show that all well-centered subpolygons are decomposable if and only if n has at most two distinct prime divisors.
- 3. For integer $n \geq 4$, find the minimal integer $f(n)$, such that for any positive integer m, in any subset with $f(n)$ elements of the set $\{m, m+1, \ldots, m+n-1\}$ there are at least 3 mutually prime elements.
- 4. For any positive integer, let $N = \varphi(1) = \varphi(2) + \cdots \varphi(n)$. Show that there exists a sequence

$$
a_1, a_2, \ldots, a_N
$$

containing exactly $\varphi(k)$ instances of k for all positive integers $k \leq n$ such that

$$
\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_N a_1} = 1.
$$

- 5. Give a positive integer $n > 1000$, add the residues of 2^n modulo each of the numbers 1, 2, ..., n. Prove that this sum is greater than 2n.
- 6. Let p be an odd prime number. Find the number of subsets of $\{1, 2, \ldots, p\}$ with the sum of elements divisible by p.
- 7. The sequence a_1, a_2, a_3, \ldots is defined by $a_1 = 0$ and $a_{4n} = a_{2n} + 1$, $a_{4n+1} = a_{2n} 1$, $a_{4n+2} = a_{2n+1} 1$, $a_{4n+3} = a_{2n+1} + 1$. Find the maximum and minimum values of a_n for $n = 1, 2, \ldots, 1996$ and the values of *n* at which they are attained. How many terms a_n for $n = 1, 2, \ldots, 1996$ are 0?